Skip to content

Tag: yucca mountain

Say Yes To Fourth Generation Nuclear Power

By Michael Karnerfors, previsouly published at Currents, the Swedish-American Chambers of Commerse magazine

Today’s policies on nuclear energy dictate that we shall put fuel that is unspent – 95 percent of it – in an expensive hole in the ground. There are better ways. Fourth generation nuclear power helps save us from our own foolish plans.

Picture this…

You are on a family car trip. You need gas, so you stop at a station and fill up twenty gallons of fuel in your car. You drive ten-fifteen miles down the road, using up one third of a gallon of gas, and then you stop. To the puzzlement of your family you siphon all of the unused gas out of the tank. Two thirds of a gallon you pour out on the road and set fire to. The remaining nineteen gallons you give back to a gas station. Your family asks you: “Why are you doing that?!”. You reply to them: “Oh that gas will be sent back to the oil well and put it into the ground again, not to be used”

By now your family will call for an ambulance and have you committed on grounds of insanity, because such behavior is without doubt utterly ludicrous.

But what if I told you that this is how most counties in the world are managing their stock of nuclear fuel, including the US?

In the middle 1980’s most of the nuclear power plants that are in operation in the world today had been built. They are of the so called second generation nuclear power. After thirty years in operation the results from these plants are quite excellent. Apart from Three Mile Island (TMI) accident – which incidentally didn’t hurt anyone – none of the pressure and boiler water reactors of West or East Asia have had a major accident. They are sturdy and reliable designs.

They do have a few drawbacks though:

  • Only 5 percent of the energy in the fuel is extracted.
  • Of the energy extracted from the fuel, two thirds is washed away as waste heat.
  • When the fuel is taken out from the reactor, it is highly radioactive, necessitating storing it for 100,000 to 1 million years while it decays.

Today tens of thousands of tons of spent nuclear fuel are sitting in casks or storage pools around the world, waiting for us to come up with a solution for it. For countries that do not allow reprocessing, there has only been one solution seriously proposed so far: deep geological repositories. You build caves deep into stable bedrock, and stuff the nuclear fuel there. Seen from a safety perspective that is a good idea because we know from the natural nuclear reactor site in Oklo, Gabon, Africa, that such repositories are extremely safe. A geological repository will keep spent nuclear fuel locked inside for literally billions of years. The only major worry is human intrusion.

Seen from a resource and sustainable development standpoint though, this is an awful(!) idea. 95 percent of the energy in spent nuclear fuel is unused. Why would we want to put that in the ground for hundreds of thousands of years when we can use it to get clean, safe energy instead?

Fourth generation nuclear power is an umbrella term for emerging reactors designs. Some of them have existed as experimental plants for decades. Countries like the U.S., Russia, France and India have been working on fourth generation for quite some time. The advantages of this new nuclear power are substantial: 

  • Fourth generation reactors use what we call “waste” today as fuel and extract twenty times the energy, used nearly twice as effective.
  • The storage time for the nuclear waste goes down to approximately 500-1,000 years instead of 1,000,000 years.
  • They can use plutonium from dismantled nuclear weapons as fuel.

Two things have held fourth generation nuclear power back so far. First the negative attitudes towards nuclear power after TMI and Chernobyl. The second factor has been the fact that Uranium has been – and still is – dirt cheap considering the fantastic amounts of energy that is extracted from the material, even with the second generation reactors.

But today, when we are faced not only with the problem of nuclear waste but also the urgent need of phasing out fossil fuels, these accidents have in the grand perspective proven to be exceedingly rare and either harmless – like TMI – or not relevant to the issue of future nuclear power, because no one is building dangerous Soviet junk-reactors designed in the 1950’s anymore. Nuclear power is without doubt coming back.

While countries like the US and Sweden are mulling over how to get people to accept nuclear waste dumps in their neighborhoods, others – like Russia and South Korea – are moving forward aggressively in the field of new nuclear power. With the current rate of expansion China will be the world leader in a couple of decades; the country is breaking ground for ten(!) new nuclear reactors every year.

Until fusion power is commercially available, the question is what role the western world will take in the continuing history of nuclear power. Will we:

  • Stop the development of our own nuclear power and bury our nuclear fuel in the world’s most advanced and expensive garbage dumps, hoping no one touches it for a million years?
  • Move forward, develop new nuclear power and produce clean energy for hundreds of years while eliminating nuclear waste and nuclear weapons?

If the first option sounds good to you, I urge you to get a siphon and start draining your gas tank…

Michael Karnerfors, Lund, Sweden

The author is a Master of Science in Computer Science and Engineering, and co-founder of the independent network Nuclear Power Yes Please” (NPYP) which seeks to gather people who consider the issue of nuclear power too important to be squandered with junk arguments and outrageous claims aimed more to scare and terrify people rather than informing them on the issues for and against nuclear power.
2 Comments