Skip to content

Category: Uncategorized

The nuclear waste issue reaches a decision in Sweden, after 50 years.

Today, 27th of January 2022, the Swedish government approved the KBS-3 method for depositing nuclear waste in Sweden. This is a decision that has been 50 years in the making, and that created and shaped the debate on Swedish nuclear power in the 1970s.

“We need power, but where to get it from?”

After World War II, Sweden was building itself up as an industrial welfare nation. For that, we needed a reliable and ample supply of energy. But where to get it?

Historically, Sweden had been dependent on hydropower from the mighty Norrland rivers…

Stornorrfors, one of Sweden’s largest hydropower dams (image source: Wikipedia)

…and imported oil.

However, it was clear that this could not continue. The resistance to further exploit the Norrland rivers was massive. This was the first major environmental issue in Sweden, where people took to the streets to protect the environment. Soon it became clear that any talk of damming up the 4 untouched rivers would be political suicide.

Meanwhile, it was becoming painfully clear that using oil for energy production was causing environmental havoc, with acidification of rivers and lakes, cancerous hydrocarbons released into the cities, carbon dioxide threatening the climate. Yes, already in the 1960s, there was awareness that carbon emissions was a danger to the climate.

So what were the options?

  • Renewables, in the shape of wind, solar, and geothermal power
  • Nuclear power

When the government put out the question as a public enquiry, the result was — as then Prime Minister Olof Palme expressed it — “completely unanimous”, in that renewables could not play any major part before 1990. That was too late.

By process of elimination, nuclear power remained.

And so it was, 12 reactors were approved by Palme’s Social Democratic party government. By the late 1960s there was complete political unity on the issue: Sweden was to adopt nuclear power, for security in power supply, for the environment, for the climate.

The hunt for a profile issue

This unity would not last though. The Swedish system of governing is a multi-party system, divided into partisan politics by way of a left and a right bloc. The left bloc was comprised of, the Social Democratic Party and the — then called — Left Party Communists. The right bloc was led by the Centre Party, and also included the liberal People’s Party, the Christian Democrats and the Moderates.

The Centre Party — an ideologically green party — was looking for a profile issue to challenge the left bloc on. They found that issue when Swedish Nobel Prize laureate Hannes Alfvén in 1972 expressed concerns over nuclear waste. Alfvén and Centre Party leader Thorbjörn Fälldin met, and from these meetings the Centre Party crystalized a standpoint on nuclear power…

Danish activist Anne Lund designed the “Smiling Sun” logo in 1975 (image license: GFDL, image credit: OOA Fonden, WISE)

Palme as the incumbent Prime Minister and Fälldin as the challenger, debated nuclear power fiercely. And the primary argument against nuclear power was the issue of waste. Fälldin — before the 1976 general election — famously said that he would not “compromise with [his] conscience” while referring to the waste, and vowed to stop all further expansion of nuclear power in Sweden.

And lo and behold, the profile issue actually struck a chord with the electorate. For the first time in decades, since before WWII, Sweden had a right bloc government. Fälldin got to work on abolishing nuclear power in Sweden

A failed promise

Two years later — in the autumn of 1978 — Fälldin’s government fell. The reason for this demands explaining a peculiarity of the Swedish Instrument of Government.

As with most democracies, Swedish official power is divided into multiple entities. But where most nations split power in three, Sweden does it in four. Where others combine Executive and Administrative power, Sweden puts a firewall between these two.

The upshot of this is that Administration — which is largely apolitical — cannot be bossed around by the political Executive; Swedish ministers are practically forbidden from making administrative decisions.

Granting permits for nuclear power is an administrative decision. So revoking or preventing permits to build and operate nuclear power is something that a minister cannot do. Instead, this is the subject for an apolitical administrative authority. And apolitical administrative authorities do not care if you as a politician have election promises to fulfill.

Thus, the Centre Party’s plan for halting the expansion of nuclear power was to introduce a law that demanded anyone wishing to obtain a permit for nuclear power activities in Sweden to show an adequate proposal for dealing with waste. Fälldin was convinced — by Alfvén — that this was an unsolvable task.

However, little did he know that in 1976, two SOUs (“State Official Reports”) had pointed to the remarkable find of natural nuclear reactors in Oklo, Gabon, Africa, and shown that a deep geological repository was not just feasible but also very likely to be adequate.

The nuclear power companies applying for permits with the Swedish Nuclear Power Inspectorate — the authority responsible for handing out nuclear power permits — referred to these reports, and other research papers from Gabon.

The Swedish Nuclear Power Inspectorate looked at this, and approved the permits.

Fälldin’s government suddenly had massive amounts of egg on their face. Feeling that they no longer had the vote of confidence by the Riksdag (Sweden’s unicameral parliament), the government resigned.

This was the beginning of the end of the — in this author’s opinion —only pragmatic argument against nuclear power.

A long and protracted end

As the reader is well aware, the 1970s and 80s were turbulent times for nuclear power.

The nuclear waste issue however, proceeded quietly. In 1984, a law was passed that established that the effort for creating a waste repository would be paid by the consumers. For many years, a levy on the electrical bill explicitly specified how much you as a consumer were paying to the Nuclear Waste Fund. This was counted at less than 1 öre per kWh (1 öre = 0.01 SEK, 1 SEK was valued at roughly 0.2 USD back then).

In close cooperation with first the Nuclear Power Inspectorate, later renamed to the Swedish Radiation Safety Authority (SSM), SKB, the company specifically created to engineer a solution for the waste, researched and designed what would later be presented as the KBS-3 solution.

In 2011, SKB submitted the proposal for approval.

SSM was the first toll gate. They asked for complementary research. SKB submitted that, and SSM passed the issue on.

Another toll gate was public approval. And in what seems a near bizarre twist to the story, the two counties proposed as sites for the repository, essentially fought each other over the issue, demanding to have the site located on their own grounds. Östhammar county won the battle, and was appointed as the site of the repository. Oskarhamns county got a “consolation prize” in the form of the encapsulation factory.

The third toll gate was the Land & Environment Court. They had little to say and swiftly approved the application.

Hence the application arrived at the final toll gate: the Swedish cabinet, and the desk of the Department for the Environment.

Just one small hitch there: the head of that department was a Green Party minister.

Quick rewind to 1978 again. The greens had just been humiliated on the issue of nuclear waste. Fälldin implored Palme to hold a referendum on the issue. Palme refused.

…until a pilot-operated relief valve jammed open in a brand-new unit at Three Mile Island.

Palme, seeing a nightmare of a summer leading up to the general election in September 1979, quickly agreed to the referendum, in order to remove the now politically radioactive issue from the table.

With the referendum, the greens again had high hope that the quick abolishment of nuclear power in Sweden would be achieved.

That did not happen. Instead, nuclear power was given a 30 year life-span in Sweden. The ideological greens were fuming at this, and quickly splintered out into a new party: the Environmental Party the Greens. First thing that went into the party programme was to declare nuclear power anathema.

Fast forward to 2021 again, and Green Party minister Per Bolund had on his table a paper to sign, a paper that — in effect — said that the Swedish government’s official position is that the nuclear power industry was right, and they did a great thing in solving the issue of waste, while the greens did nothing but fling dirt at them.

That paper remained unsigned for many months, and the political opposition began to accuse the government of stalling. Threats of constitutional hearings, even a vote of no confidence, were uttered.

The unexpected thaw

Then, suddenly, in late November 2021, the Green Party said “we are leaving the government”. The reason stated was domestic political issues, but the practical upshot of this was that a new minister for the environment was appointed, one that was not ideologically green.

The political opposition quickly swarmed the new minister — Annika Strandhäll — like disaster news on a nuclear event, and demanded a decision on the waste issue. Strandhäll delayed that decision over Yule 2021.

And — today — 27th of January 2022, the historical decision was announced…

KBS-3 is approved as a solution for high-level nuclear waste in Sweden.

50 years of waiting is over.

Comments closed

“If the world were to adopt nuclear power, where would all of the waste go?”

A surprisingly good outreach platform has turned out to be, a Q&A site where people ask questions and let anyone answer. So I will be replicating some of my answers from there to here. Enjoy…

Nature showed us how to do it, and it works great!

This is a nuclear waste repository, that held waste for 2 billion years.

(image source)

Yes, you read that right: 2,000,000,000 years. That is 20,000 times more than what we consider to be adequate for a repository. And the only reason it is not longer than that is because…

a. that is how much time has passed since the waste was created

b. the waste has now decayed, completely. [1]

In the 1970’s, the Uranium ore find at Oklo, Gabon, Africa, gathered attention, because there was something “wrong” with the ore. It was as if the Uranium had already been used in a reactor.

As it turned out, it had indeed been in a reactor, a natural reactor. Billions of years back the isotope mix of Uranium was more like that we use in artificial reactors today. So all it needed was a bit of water to moderate the neutrons and — voilà! — nuclear fission, just like we do it today.

Nuclear fission means nuclear waste. These natural reactors also made waste. That meant a golden opportunity for us to examine what happened to the waste. The conclusion was astounding:

The waste stayed in place and moved less than 10 feet / 3 meters

This is despite the fact that the waste…

  • was not packaged in fuel bundles
  • was not encapsulated
  • was subjected to violent temperature swings (these reactors worked in cycles of a few hours)
  • was washed through by water for hundreds of thousands of years

The chief finding was that long-lived waste — the Transuraniums like Plutonium and Americium and other such Actinides — binds chemically to rock in a reducing environment and remains entirely immobile.

This is the key to why geological repositories work. Nature told us so. And that is why we are building repositories that way.

The Swedish KBS-3 method builds on the findings of Oklo and further research since the 1970’s. KBS-3 is already approved in Finland, and is in the process of being approved in Sweden.

Tom Scott visits the Finnish KBS-3 repository at Onkalo, Finland
The KBS-3 method, developed by SKB (image source)

KBS-3 — besides using the reducing environment of the bedrock — also adds the following barriers.

  • The fuel remains in the fuel rods, i.e. clad in Zirconium alloy. They are then placed in…
  • Cast iron holders. The cast iron ensures rigidity, toughness, and that the environment will remain reducing even if water enters the…
  • 2 inch / 50 mm thick corrosion resistant copper capsule that encapsulates the fuel bundles and their holder. That capsule is then surrounded by…
  • A layer of water absorbent Bentonite clay. The clay acts as soft padding to keep the capsule from being subjected to movements of the bedrock. It is also meant to be wet, because when it wets it swells to a pressure of 50 atmospheres, and is pressed into all the cracks and fissures around…
  • The bore hole, made 500 meters down into geologically stable bedrock, with a reducing environment and only small water movement.

The only thing that the Oklo reactors had was the reducing environment, and that alone held the waste in place for 2 billion years. KBS-3 will do the job.

So anyone that says there is no plan or no method or no site to deal with nuclear waste, is speaking — put in the plainest of the Queen’s English — complete and utter bollocks.


[1] The half-life of Plutonium-239 is: \[t_{1/2}= 24,100 y\]

So the tenth-life of Pu-239 is: \[t_{1/10} = t_{1/2} \left(\frac{ln(10)}{ln(2)}\right) \Rightarrow\]

\[t_{1/10} = 24,100 \cdot 3.32 \approx 80,000 y\]

So 2 billion years makes for…

\[2,000,000,000 / 80,000 = 25,000\]

…25,000 tenth-lives.

After about 110 or so tenth-lives, the original amount would have had to fill out the entirety of the known observable universe in order to have one atom left.

Leave a Comment

Up and running again

After fearing the blog was irreparably broken, it turned out that a little TLC was all it needed, and — my oh my — how WordPress has evolved since we last put anything on it.

Now all we need is some content.

Do you have any suggestions? Send us a message on Twitter, or email. 🙂

Comments closed

A good thrasing of S&M

cherry-picking   S&M (Sherman and Mangano) is in need of a good spanking after dubious (is there any other kind?) cherry-picking with their new Fukushima toomfoolery published in Counterpunch. Fortunately we don’t need to dig into their muck here because it has already been done, I recommend everyone to head over to Numbers and Opinions and get a lesson in how desperate S&M are becoming. Must be hard to have spent a lifes work portraying the horrible nuclear disaster and when it actually happens people have the audacity to simply refuse to drop dead.

Comments closed

Pandora’s Promise visas i Stockholm 25 November


Gratisbiljetter kan fås via denna länken. Pandora’s Promise är något så unikt som en dokumentär som visar en positiv bild av kärnenergi. Den försöker förklara behovet och potentialen hos kärnenergi sett ur synvinkeln av flera miljövänner som konverterat från kärnkraftsmotståndare till förespråkare. Från vad vi hört ska den även vara imponerande korrekt vetenskapligt/ingenjörsmässigt. Det ska bli väldigt spännande att se vad regissören Robert Stone åstadkommit!

Stone har givetvis försökt få så stor publik som möjligt för dokumentären men har mött hårt motstånd från media i Europa, tydligen vill ingen tv-kanal ta i den med motivet att den går emot så många andra dokumentärer som kanalerna tidigare sponsrat och producerat. Lyckligtvis kommer den släppas på iTunes och eventuellt Netflix och förhoppningsvis får filmen den uppmärksamhet den förtjänar. Vän av ordning kanske påpekar att exempelvis Maj Wechselmann inte heller får visa sitt alster i SVT, men det är inte en helt korrekt jämförelse vilket Dara O’Briain så korrekt förklarar i följande youtubeklipp…

Comments closed

Inleds en farlig fas i Fukushima?



På nätet har det cirkulerat ett tag nu att en väldigt farlig fas ska inledas i Fukushima, något som kan döda miljarder människor. Det hela handlar om att tömma bränslebassängen i Fukushima 4 på använt kärnbränsle. Det verkar vara en del i en tendens för miljörörelsen att helt enkelt inte kunna släppa att ingen dött i Fukushima på grund av strålning och då måste man hitta på all möjlig skit för att hålla vid liv skräcken. Idag valde dessvärre Cornucopia att spinna vidare på svamlet så det är nog dags för ett kort bemötande. Låt oss kortfattat gå igenom det hela steg för steg.

Kärnbränslet får inte stöta i något annat kärnbränsle, då man kan uppnå kritikalitet

Det kallas använt kärnbränsle av en anledning och det är för att det helt enkelt inte går att få mer kräm ur bränslet. Lite förenklat kan man beräkna en neutronmultiplikationsfaktor för varje bränsleknippe. Är multiplikationsfaktorn större än ett så får man ut mer än en neutron för varje neutron som åker in i knippet, är den mindre än ett så får man ut färre neutroner än man stoppar in och är den lika med ett så får man ut precis lika många som man stoppar in (mer ingående diskussion om multiplikation och kriticitet kan läsas i det här inlägget). När man stoppar in ett helt färskt knippe i en härd har det en multiplikationsfaktor på runt 1.2 och när man plockar ut det efter typiskt fyra år är den nere på 0.8-0.9. I en härd har man allt från färska knippen till fyraåriga knippen och man blandar dom så att härden totalt sett får en multiplikationsfaktor på 1.0.

När ett knippe väl gått ner till 0.8 så duger det inte längre till något så man måste plocka ut det och stoppa det i en bassäng där restvärmen får klinga av i några år. Det innebär att du kan göra en hur stor hög som helst med knippen med en multiplikationsfaktor på 0.8 och dom kommer aldrig gå kritisk under någon som helst omständighet.

Nu kan man förstås ha delutbrända knippen i bassängen också, i Fukushima-4 hade man laddat ut allt bränsle ur härden in i bassängen för att arbeta på reaktortanken. Det innebär att den bassängen innehåller en blandning av bränslen från ettåriga till fleråriga. Vissa knippen kan alltså ha en multiplikationsfaktor över 1. Men vid ett kraftverk gör man en hel rad med analyser för bränslebassängen för att försäkra sig om att kriticitet aldrig kan ske. Det största antagandet man gör är att allt bränsle i bassängen är helt färskt, dvs har så hög multiplikationsfaktor som det bara går, sen leker man hejvilt med alla parametrar. Man för in bubblor i vattnet för att optimera modereringen (en bassäng är starkt övermodererad och sänker man den effektiva vattendensiteten ökar alltså multiplikationsfaktorn), man leker med temperaturerna (doppleråterkoppling odyl som man kan läsa om i detta inlägget). Man låtsas att en jordbävning sker så knippena ligger huller om buller. Man analyserar vad som händer om man tappar ett knippe tvärs över dom andra osv. Alla dessa analyser görs oftast med antagandet att man inte har något bor i vattnet (bor äter neutroner hejfriskt och sänker multiplikationsfaktorn) vilket man i realiteten oftast har. Till på köpet brukar man ha plattor med neutronabsorberande material inbyggt uppställningen i en bränslebassäng.

Trots alla dessa konservativa antaganden så ska bassängen aldrig gå kritisk, det är helt enkelt inte tillåtet att det ska kunna ske. Det innebär att om dom råkar tappa knippen etc vid den kommande manövern så kommer det inte spela någon som helst roll. Man kan inte på något rimligt eller orimligt sätt få kriticitet i en bränslebassäng. Det ska till att den som laddar ur bassängen avsiktligt börjar stapla knippen på något väldigt specifikt sätt vilket blir rent ut sagt löjligt.

Att det funkar såhär är helt enkelt för att en vanlig reaktorhärd är vansinnigt optimerad för att få maximal kräm ur reaktorn, det innebär att vilken annan konfiguration som helst av knippena, tex i en bassäng, kommer vara mindre reaktivt.

Risken för en kriticitet är minst sagt obefintlig.

Vad händer då OM ett man får en litet kriticitet genom att jultomten hittar dom värsta knippena och staplar dom nära varandra samtidigt som han trollar bort boret i vattnet? Ja då kommer bara vattnet i knippena koka bort fort (knippena är som ett plåtrör med bränsle i) och knippena blir underkritiska igen. Det blir ingen explosion, som värst kokar man bort lite vatten, knippet kallnar, vatten rinner tillbaka och det kokar lite på nytt osv (lite som de naturliga reaktorer i Oklo).

Näst påståenden då?

och det får inte heller komma upp i luften, då det kan börja brinna.

Bränslet har nu legat i bassängen i minst 2.5 år och många har legat betydligt längre än så. Förstår man radioaktivitet så förstår man att resteffekten på grund av radioaktivt sönderfall minskar med tiden. Efter några år så är det inte mycket värmeproduktion längre. För att man ska få en kraftig oxidation av kapslingsmaterialet (dvs att skiten börjar brinna) krävs det hög temperatur och vattenånga. Har man bara kapslingsmaterial i luft börjar det inte brinna i första taget, se tex videoklippet (efter 50 sekunder) nedan där man kör en svetslåga på zircalloy (legeringen som kapslingen är gjord av). Jag är för lat för att räkna ut rimlig resteffekt på en 2.5 år gammal bränslestav just nu men att komma upp i tusentals grader är löjligt, speciellt när man här menar att det ska ske momentant. Det är fysikaliskt omöjligt!

Vad mer påstås?

In the worst-case scenario, the pool could come crashing to the ground, dumping the rods together into a pile that could fission and cause an explosion many times worse than in March 2011.

Som jag redan gått igenom ovan så går knippena INTE kritiska om man dumpar allt i en hög, speciellt inte om det är blandat med allt jäkla bråten som en kollapsad byggnad innebär. Det finns ingenting som kan explodera eftersom man inte kan få en vätgasproduktion i en sådan hög, vätgasproduktion sker när kapslingsmaterialet är i kontakt med vattenånga och yttemperaturen överstiger 1000 grader, sådana temperaturer går inte uppnå med så gammalt bränsle som ligger huller om buller tillsammans med betong och all möjlig skit. Utan vätgas kan det inte bli någon explosion. Det skulle bara bli ett jävla jobb att rensa upp den högen med bråte, men det finns inget tecken på att byggnaden kommer rasa, det är skitsnack.

Comments closed

How to make a nuclear reactor disappear

Just a short blog post during a quiet period that has unfortunately reigned on this blog for a while. Recently during the voting for the German greentech awards something tremendously embarrassing happened! A nuclear reactor of all things had the audacity to win the voting. That led to a dilemma of course because nuclear anything can’t be allowed to win anything in Germany, especially not when the environment secretary himself is the patron of the award.

So what did they do, they changed the rules of course to ensure that the voting has no meaning (““selection of nominees and winners will ultimately be done independently by the Jury of Awards GreenTec. Legal action is excluded.”) and that nuclear will never be allowed to win (“and our jury reject nuclear energy in any form categorically!”). I wonder how they would treat geothermal energy (radioactive decay anyone?!?)…

The story is told much better over at the Rainer Klute’s blog, “How to stash a nuclear reactor away”, I suggest everyone read Rainers post and support his petition!

Now its time to return to the wonderful Swedish midsummer festivities exquisitely summarized in this IKEA commercial.

Comments closed