Skip to content

Category: Nuclear Power? Yes Please

“If the world were to adopt nuclear power, where would all of the waste go?”

A surprisingly good outreach platform has turned out to be Quora.com, a Q&A site where people ask questions and let anyone answer. So I will be replicating some of my answers from there to here. Enjoy…

Nature showed us how to do it, and it works great!

This is a nuclear waste repository, that held waste for 2 billion years.

(image source)

Yes, you read that right: 2,000,000,000 years. That is 20,000 times more than what we consider to be adequate for a repository. And the only reason it is not longer than that is because…

a. that is how much time has passed since the waste was created

b. the waste has now decayed, completely. [1]

In the 1970’s, the Uranium ore find at Oklo, Gabon, Africa, gathered attention, because there was something “wrong” with the ore. It was as if the Uranium had already been used in a reactor.

As it turned out, it had indeed been in a reactor, a natural reactor. Billions of years back the isotope mix of Uranium was more like that we use in artificial reactors today. So all it needed was a bit of water to moderate the neutrons and — voilà! — nuclear fission, just like we do it today.

Nuclear fission means nuclear waste. These natural reactors also made waste. That meant a golden opportunity for us to examine what happened to the waste. The conclusion was astounding:

The waste stayed in place and moved less than 10 feet / 3 meters

This is despite the fact that the waste…

  • was not packaged in fuel bundles
  • was not encapsulated
  • was subjected to violent temperature swings (these reactors worked in cycles of a few hours)
  • was washed through by water for hundreds of thousands of years

The chief finding was that long-lived waste — the Transuraniums like Plutonium and Americium and other such Actinides — binds chemically to rock in a reducing environment and remains entirely immobile.

This is the key to why geological repositories work. Nature told us so. And that is why we are building repositories that way.

The Swedish KBS-3 method builds on the findings of Oklo and further research since the 1970’s. KBS-3 is already approved in Finland, and is in the process of being approved in Sweden.

Tom Scott visits the Finnish KBS-3 repository at Onkalo, Finland
The KBS-3 method, developed by SKB (image source)

KBS-3 — besides using the reducing environment of the bedrock — also adds the following barriers.

  • The fuel remains in the fuel rods, i.e. clad in Zirconium alloy. They are then placed in…
  • Cast iron holders. The cast iron ensures rigidity, toughness, and that the environment will remain reducing even if water enters the…
  • 2 inch / 50 mm thick corrosion resistant copper capsule that encapsulates the fuel bundles and their holder. That capsule is then surrounded by…
  • A layer of water absorbent Bentonite clay. The clay acts as soft padding to keep the capsule from being subjected to movements of the bedrock. It is also meant to be wet, because when it wets it swells to a pressure of 50 atmospheres, and is pressed into all the cracks and fissures around…
  • The bore hole, made 500 meters down into geologically stable bedrock, with a reducing environment and only small water movement.

The only thing that the Oklo reactors had was the reducing environment, and that alone held the waste in place for 2 billion years. KBS-3 will do the job.

So anyone that says there is no plan or no method or no site to deal with nuclear waste, is speaking — put in the plainest of the Queen’s English — complete and utter bollocks.


Footnotes

[1] The half-life of Plutonium-239 is: \[t_{1/2}= 24,100 y\]

So the tenth-life of Pu-239 is: \[t_{1/10} = t_{1/2} \left(\frac{ln(10)}{ln(2)}\right) \Rightarrow\]

\[t_{1/10} = 24,100 \cdot 3.32 \approx 80,000 y\]

So 2 billion years makes for…

\[2,000,000,000 / 80,000 = 25,000\]

…25,000 tenth-lives.

After about 110 or so tenth-lives, the original amount would have had to fill out the entirety of the known observable universe in order to have one atom left.

Leave a Comment

Inleds en farlig fas i Fukushima?

821199

 

På nätet har det cirkulerat ett tag nu att en väldigt farlig fas ska inledas i Fukushima, något som kan döda miljarder människor. Det hela handlar om att tömma bränslebassängen i Fukushima 4 på använt kärnbränsle. Det verkar vara en del i en tendens för miljörörelsen att helt enkelt inte kunna släppa att ingen dött i Fukushima på grund av strålning och då måste man hitta på all möjlig skit för att hålla vid liv skräcken. Idag valde dessvärre Cornucopia att spinna vidare på svamlet så det är nog dags för ett kort bemötande. Låt oss kortfattat gå igenom det hela steg för steg.

Kärnbränslet får inte stöta i något annat kärnbränsle, då man kan uppnå kritikalitet

Det kallas använt kärnbränsle av en anledning och det är för att det helt enkelt inte går att få mer kräm ur bränslet. Lite förenklat kan man beräkna en neutronmultiplikationsfaktor för varje bränsleknippe. Är multiplikationsfaktorn större än ett så får man ut mer än en neutron för varje neutron som åker in i knippet, är den mindre än ett så får man ut färre neutroner än man stoppar in och är den lika med ett så får man ut precis lika många som man stoppar in (mer ingående diskussion om multiplikation och kriticitet kan läsas i det här inlägget). När man stoppar in ett helt färskt knippe i en härd har det en multiplikationsfaktor på runt 1.2 och när man plockar ut det efter typiskt fyra år är den nere på 0.8-0.9. I en härd har man allt från färska knippen till fyraåriga knippen och man blandar dom så att härden totalt sett får en multiplikationsfaktor på 1.0.

När ett knippe väl gått ner till 0.8 så duger det inte längre till något så man måste plocka ut det och stoppa det i en bassäng där restvärmen får klinga av i några år. Det innebär att du kan göra en hur stor hög som helst med knippen med en multiplikationsfaktor på 0.8 och dom kommer aldrig gå kritisk under någon som helst omständighet.

Nu kan man förstås ha delutbrända knippen i bassängen också, i Fukushima-4 hade man laddat ut allt bränsle ur härden in i bassängen för att arbeta på reaktortanken. Det innebär att den bassängen innehåller en blandning av bränslen från ettåriga till fleråriga. Vissa knippen kan alltså ha en multiplikationsfaktor över 1. Men vid ett kraftverk gör man en hel rad med analyser för bränslebassängen för att försäkra sig om att kriticitet aldrig kan ske. Det största antagandet man gör är att allt bränsle i bassängen är helt färskt, dvs har så hög multiplikationsfaktor som det bara går, sen leker man hejvilt med alla parametrar. Man för in bubblor i vattnet för att optimera modereringen (en bassäng är starkt övermodererad och sänker man den effektiva vattendensiteten ökar alltså multiplikationsfaktorn), man leker med temperaturerna (doppleråterkoppling odyl som man kan läsa om i detta inlägget). Man låtsas att en jordbävning sker så knippena ligger huller om buller. Man analyserar vad som händer om man tappar ett knippe tvärs över dom andra osv. Alla dessa analyser görs oftast med antagandet att man inte har något bor i vattnet (bor äter neutroner hejfriskt och sänker multiplikationsfaktorn) vilket man i realiteten oftast har. Till på köpet brukar man ha plattor med neutronabsorberande material inbyggt uppställningen i en bränslebassäng.

Trots alla dessa konservativa antaganden så ska bassängen aldrig gå kritisk, det är helt enkelt inte tillåtet att det ska kunna ske. Det innebär att om dom råkar tappa knippen etc vid den kommande manövern så kommer det inte spela någon som helst roll. Man kan inte på något rimligt eller orimligt sätt få kriticitet i en bränslebassäng. Det ska till att den som laddar ur bassängen avsiktligt börjar stapla knippen på något väldigt specifikt sätt vilket blir rent ut sagt löjligt.

Att det funkar såhär är helt enkelt för att en vanlig reaktorhärd är vansinnigt optimerad för att få maximal kräm ur reaktorn, det innebär att vilken annan konfiguration som helst av knippena, tex i en bassäng, kommer vara mindre reaktivt.

Risken för en kriticitet är minst sagt obefintlig.

Vad händer då OM ett man får en litet kriticitet genom att jultomten hittar dom värsta knippena och staplar dom nära varandra samtidigt som han trollar bort boret i vattnet? Ja då kommer bara vattnet i knippena koka bort fort (knippena är som ett plåtrör med bränsle i) och knippena blir underkritiska igen. Det blir ingen explosion, som värst kokar man bort lite vatten, knippet kallnar, vatten rinner tillbaka och det kokar lite på nytt osv (lite som de naturliga reaktorer i Oklo).

Näst påståenden då?

och det får inte heller komma upp i luften, då det kan börja brinna.

Bränslet har nu legat i bassängen i minst 2.5 år och många har legat betydligt längre än så. Förstår man radioaktivitet så förstår man att resteffekten på grund av radioaktivt sönderfall minskar med tiden. Efter några år så är det inte mycket värmeproduktion längre. För att man ska få en kraftig oxidation av kapslingsmaterialet (dvs att skiten börjar brinna) krävs det hög temperatur och vattenånga. Har man bara kapslingsmaterial i luft börjar det inte brinna i första taget, se tex videoklippet (efter 50 sekunder) nedan där man kör en svetslåga på zircalloy (legeringen som kapslingen är gjord av). Jag är för lat för att räkna ut rimlig resteffekt på en 2.5 år gammal bränslestav just nu men att komma upp i tusentals grader är löjligt, speciellt när man här menar att det ska ske momentant. Det är fysikaliskt omöjligt!

http://abclocal.go.com/kgo/story?section=news/local/east_bay&id=8020441

Vad mer påstås?

In the worst-case scenario, the pool could come crashing to the ground, dumping the rods together into a pile that could fission and cause an explosion many times worse than in March 2011.

Som jag redan gått igenom ovan så går knippena INTE kritiska om man dumpar allt i en hög, speciellt inte om det är blandat med allt jäkla bråten som en kollapsad byggnad innebär. Det finns ingenting som kan explodera eftersom man inte kan få en vätgasproduktion i en sådan hög, vätgasproduktion sker när kapslingsmaterialet är i kontakt med vattenånga och yttemperaturen överstiger 1000 grader, sådana temperaturer går inte uppnå med så gammalt bränsle som ligger huller om buller tillsammans med betong och all möjlig skit. Utan vätgas kan det inte bli någon explosion. Det skulle bara bli ett jävla jobb att rensa upp den högen med bråte, men det finns inget tecken på att byggnaden kommer rasa, det är skitsnack.

Comments closed

How to make a nuclear reactor disappear

Just a short blog post during a quiet period that has unfortunately reigned on this blog for a while. Recently during the voting for the German greentech awards something tremendously embarrassing happened! A nuclear reactor of all things had the audacity to win the voting. That led to a dilemma of course because nuclear anything can’t be allowed to win anything in Germany, especially not when the environment secretary himself is the patron of the award.

So what did they do, they changed the rules of course to ensure that the voting has no meaning (““selection of nominees and winners will ultimately be done independently by the Jury of Awards GreenTec. Legal action is excluded.”) and that nuclear will never be allowed to win (“and our jury reject nuclear energy in any form categorically!”). I wonder how they would treat geothermal energy (radioactive decay anyone?!?)…

The story is told much better over at the Rainer Klute’s blog, “How to stash a nuclear reactor away”, I suggest everyone read Rainers post and support his petition!

Now its time to return to the wonderful Swedish midsummer festivities exquisitely summarized in this IKEA commercial.

Comments closed

New graphics, updates to old graphics.

 

Hello all…. we have added a few new graphics to the download page. All new languages are Spanish, Portuguese, Swiss-German and Finnish. Also on the French page we have added a new version with a slightly more entusiastic message: Energie Nucleáire? J’en Veux.  (Nuclear power? I want it!)

See samples below with links to the download pages. As always these are released under a Creative Commons 3.0, Share Alike, Attribution, No Commersial License.

In short:

  • use it as you like as long as you share it with others.
  • tell people where you got it.
  • don’t make a profit out of it.

Enjoy. 🙂

Español – Spanish


Português – Portuguese


Schweizerdeutsch – Swiss-German


Suomi – Finnish


Français – French

Comments closed

Nuclear Power Yes Please anno 1980

Dokumentären på SVTs K-special med namnet Ström åt folket är en underbar genomgång av svensk elektronisk musik från 1953 fram till idag, allt i 125 bpm. Lustigt nog gör filmskaparna sig skyldiga till en faktoid då man kommer till 1980-talet. Se själva i denna filmsekvens, men var på hugget, för det går undan:

 

Klipp från dokumentären “Ström åt folket”. Klicka på bilden för att se filmsekvensen.

 

Bland alla minnesbilder avhandlas kärnkraftsomröstningen på några sekunder med ett par demonstrationsscener följt av knapparna för Linje 2, Nuclear Power Yes Please, Linje 3 och en smiley, sen hastar man vidare förbi ryska ubåtar och…

Men vänta nu, vad hände med Linje 1? Och vad sjutton gör NPYP-knappen där??? Även smiley-knappens närvaro i sammanhanget kan ifrågasättas men vi tillåter oss lite självupptagenhet och fokuserar på NPYP-knappen. Tror filmmakarna verkligen att Nuclear Power Yes Please och loggan fanns redan år 1980 (soundtracket kom förvisso till 1983…)? Det är väldigt roande, speciellt som hälften av oss inte ens var födda då. Men vi tackar och tar emot, det är ett gott betyg på att vi sedan starten 2008 har gjort ett avtryck i debatten. Så pass att en del tror att vi har funnits i mer än 30 år.

Eller hur var det nu, vi kanske var med ändå…?

Över 10 000 personer samlades för att demonstrera för kärnkraften i Stockholm den 21 mars 1981
Över 10 000 personer samlades för att demonstrera för kärnkraften i Stockholm den 21 mars 1981. Eller kanske inte… (originalet ligger som nummer 6 i bildsviten på den SvD-artikel man når genom att klicka på bilden)

Comments closed

För de som inte gillade Wechselmanns film…

…finns det hopp om en annan bild av kärnkraften på biodukarna. I dagarna har har Robert Stones film Pandora’s Promise premiär på Sundance Film Festival i Park City (Utah, USA), han gör i denna upp med de myter som tidigare legat till grund för hans kärnkraftsmotstånd. Vi får se om och när den lyckas leta sig över Atlanten till våra biosalonger.

pandora_image_02

Den bör givetvis granskas kritiskt, men vi har all anledning att tro att den kommer vara avsevärt mer saklig än Maj Wechselmanns Världens säkraste kärnkraftverk. Varför då då? Jo, han började ifrågasätta och faktakolla allt det han trott vara sant, och vågade komma fram till att han hade fel. Robert Stones egna ord:

Pandora’s Promise is without question the most personal and important film of my career.  I’ve learned that just about everything I thought I knew about energy turned out to be wrong.  And most of what I thought I knew about nuclear energy and its historical events has turned out to be precisely the opposite of what really happened.

Hatten av för Robert Stone…

Comments closed

Why don’t nuclear reactors go kaboom? A reactor kinetics primer part – 2

Advanced test reactor Foto: Matt Howard, Source: Wikimedia Licens: Creative Commons Attribution-Share Alike 2.0 generic

Its time for some more fun with reactor kinetics, in the last post we ended by looking at the point kinetics equation with one group of delayed neutrons. In this post as I promised we will talk about reactivity feedbacks. To brush up your memory, reactivity is defined as:

4 Comments

Why don’t nuclear reactors go kaboom? A reactor kinetics primer part – 1

Nuclear reactors contain tons of fissile material and nuclear bombs contain only kilograms of fissile materials, so why does one of them explode with enough force to flatten a city but the other doesn’t? I will pull out some latex skillz and geek it out with equations to describe the physics behind whats in nuclear engineering is called reactivity excursions or RIA (Reactivity Insertion Accident). The level of these blog posts will be such that an interested and fairly math savy person can understand and calculate these kind of things on their own.

Castle Romeo photo: United States Department of Energy, Source: Wikimedia

Comments closed

Radioactive tourism – A trip to the Ytterby mine

I am taking a online geology course for fun right now, the subject has always interested me and it is quite different from the maths heavy physics I am used to. Sweden has a grand history in geology, mineralogy and chemistry and chief among historic locations must be the mine in Ytterby, a suburb to Stockholm. In 1787 the lieutenant, chemist and amature geologist Carl Axel Arrhenius was sorting through the mine heap at Ytterby and discovered a unusually heavy black rock. Realizing that it must be a undiscovered mineral he sent samples of the rock to several chemists for analysis. The man that did the best job was Johan Gadolin and the mineral was named Gadolinite in his honor. The mineral contains, among other things, the element yttrium and it was the first of the rare earth elements to be discovered. Another 6 new elements where discovered in minerals from Ytterby and no less than 4 is named directly after the location (Yttrium, Terbium, Erbium and Ytterbium along with Skandium, Thulium and Holmium).

I happen to live in Stockholm which means a small field trip to Ytterby is a must and there I went a few weeks ago. Anyone that has been following the rare earth situation in China also knows that where there is rare earths usually one also finds Thorium, properly armed with a dosimeter I was looking forward to some rads!

Comments closed